Neural Network Algorithms for Multi Step Ahead Prediction
نویسندگان
چکیده
Multimedia services became a major part of the internet network traffic. The bursty characteristics of the video traffic, produced by applications like video on demand, video broadcasting or videoconferencing, make it difficult to fulfill the Quality of Service (QoS) of the multimedia applications. Therefore it is important to utilize congestion control procedures. One of the procedures used to fulfill the QoS are traffic prediction and dynamic bandwidth allocation. Neural networks belong to vastly used tools for traffic prediction. In this paper, we propose three algorithms for multistep ahead prediction with the use of Nonlinear AutoRegressive model with eXogeneous inputs (NARX) neural network and the Multilayer Perceptron (MLP) based on separation of different frames, together with the prediction of difference values. At first we briefly describe the characteristics of the video traffic. Then we introduce theoretical fundamentals of the NARX neural network and multilayer perceptron. Then we describe the proposed algorithms and in the last section we present the results of video traffic prediction using the proposed algorithms for multi step ahead video traffic prediction. KeywordsNeural Networks; Nonlinear Autoregressive Model With Exogeneous Inputs; Multi Step Ahead Prediction; Video Traffic Prediction
منابع مشابه
Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملMulti-step-ahead Prediction with Neural Networks: a Review
We review existing approaches in using neural networks for solving multi-step-ahead prediction problems. A few experiments allow us to further explore the relationship between the ability to learn longer-range dependencies and performance in multi-stepahead prediction. We eventually focus on characteristics of various multi-step-ahead prediction problems that encourage us to prefer one method o...
متن کاملPrediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin
The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...
متن کاملSurvey of Grid Resource Monitoring and Prediction Strategies
This literature focuses on grid resource monitoring and prediction, representative monitoring and prediction systems are analyzed and evaluated, then monitoring and prediction strategies for grid resources are summarized and discussed, recommendations are also given for building monitoring sensors and prediction models. During problem definition, one-step-ahead prediction is extended to multi-s...
متن کاملComparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction
No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...
متن کامل